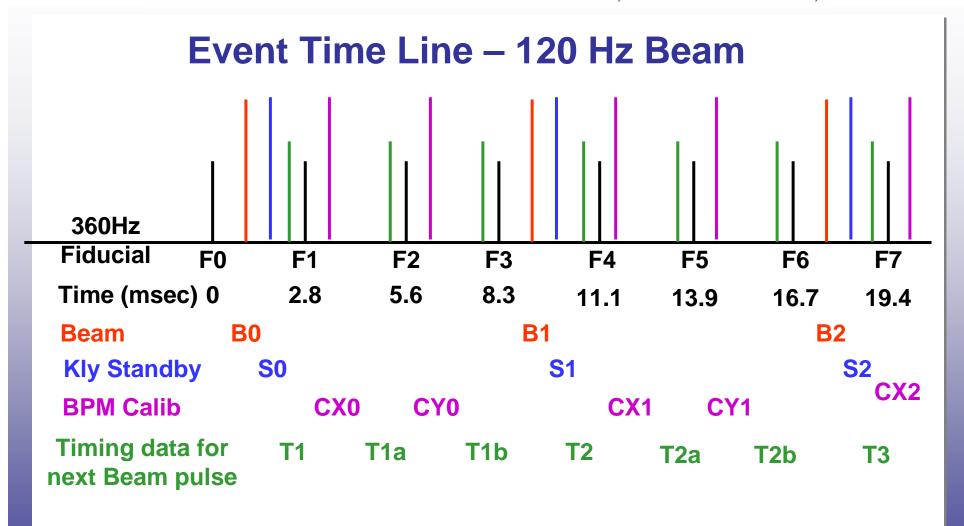
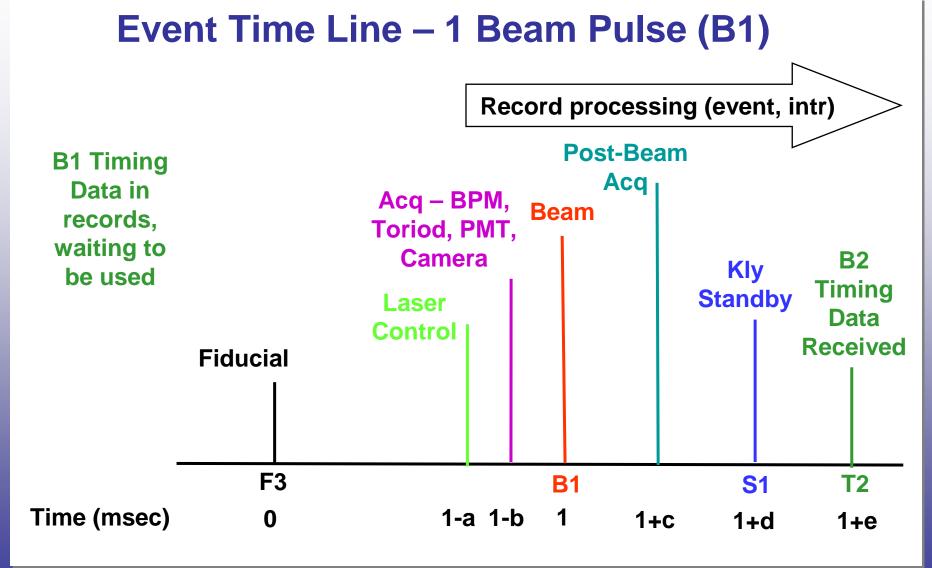


LCLS Event System

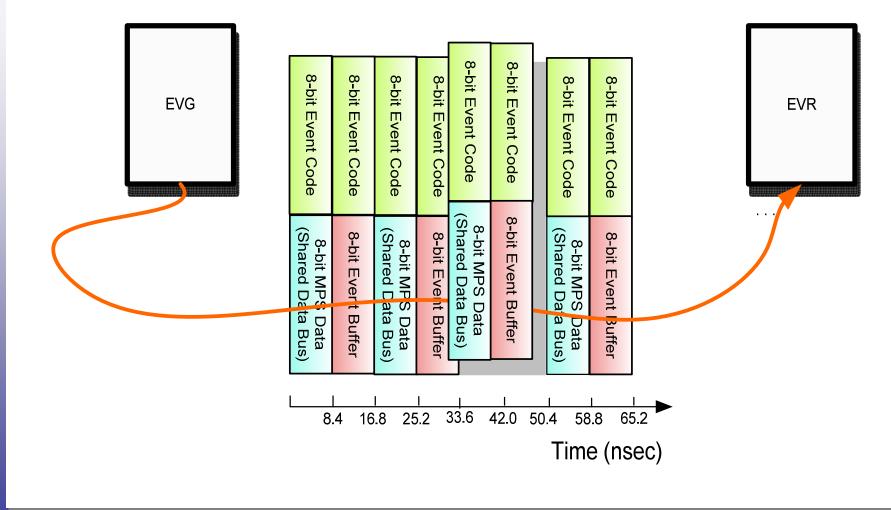
- Outline
 - HW Block Diagram
 - Timing Requirements
 - Time Lines
 - EVG to EVR Data Transfer
 - Beam-Synchronous Acquisition and Control
 - Issues/Comments
 - Status/To-Do



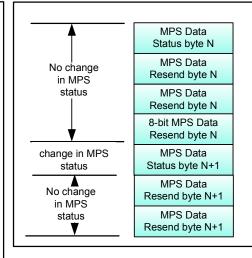
Timing Requirements


Maximum trigger rate	360 Hz
Clock frequency	119 MHz
Clock precision	20 ps
Coarse step size	8.4 ns ± 20 ps
Delay range	>1 sec
Fine step size	20 ps
Max timing jitter w.r.t. clock	2 ps rms
Differential error, location to location	8 ns
Long term stability	20 ps

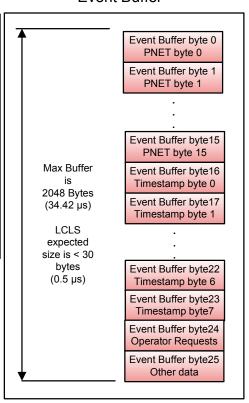
saa@slac.stanford.edu



EVG-to-EVR Data Transfer (Dayle Kotturi)

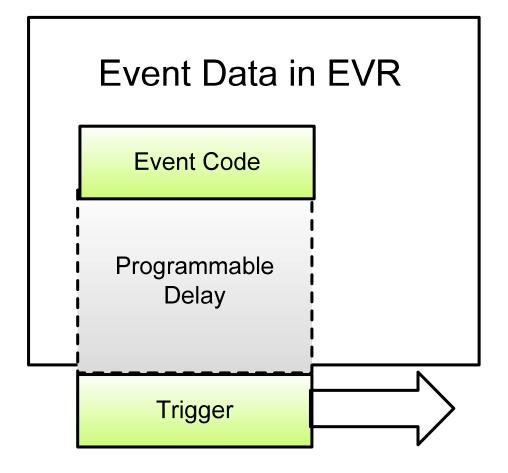

EVG-to-EVR Data Example (Dayle Kotturi)

Sequence RAM Events queued to send


Countdown to send	Event Code
0.00 ms	360 Hz fiducial
Countdown to send	Event Code
8.4 ns	SBBD
Countdown to send	Event Code
0.80 ms	RF On
Countdown to send	Event Code
0.90 ms	BPM Trigger
Countdown to send	Event Code
0.99 ms	Laser Trigger
Countdown to send	Event Code
1.00 ms	Beam On
Countdown to send 1.01 ms	Event Code SBBD
Countdown to send	Event Code
1.02 ms	1 Hz event
Countdown to send	Event Code
1.03 ms	10 Hz event
Countdown to send	Event Code
Operator request	HLA DAQ
Countdown to send Operator request	Event Code Dump Circ Buffers

Two SBBD event codes shown. First is case to send beam to undulator; second is timed to OR the other, per seg RAM.

MPS Data


Event Buffer

Stanford Accelerator Center

Trigger from Event Code (Dayle Kotturi)

Event Applications

- Beam-Synchronous Control: rules and algorithm for creating EVG trigger sequences on a pulse-topulse basis
 - Algorithm change on-the-fly based on user requests
 - Single-Shot vs continuous beam pulses enforce minimum delay between single-shot requests
 - Bunch length measurement
 - Rate limit
 - Beam destination
 - MPS rate limit and destination requests
 - Send out calibration, standby, and software triggers during non-beam time slots

saa@slac.stanford.edu

Event Applications (cont)

- Beam-Synchronous Acquisition: mechanism for users to request pulse-by-pulse acquisition across multiple IOCs:
 - Single-shot or multiple contiguous pulses
 - Include or exclude a pulse from resultant waveforms based on information in the timing pattern for that pulse
 - Can be implemented by either data mining of large data/timing-pattern arrays
 - ...or use the timing system to trigger data copy to special records based on preset conditions, requires reserve/release of special records

Stephanie Allison

saa@slac.stanford.edu

Stanford Synchrotron Radiation Laboratory

Immediate Issues/Comments

- EVG RF input divider new circuit added to EVG
- Do we need EVR with RF recovery (EVR with clock)? 119Mhz availability throughtout?
- Fiber plant:
 - Match network bulk cable where possible
 - Where is single mode fiber needed? Between fanouts? To EVR w/RF recovery?
 - How much EVR daisy-chaining can we do?
 - Daisy chain vs tap to split
 - No plans for redundancy
- TTL triggers long trigger cables need design
- Not enough testing has been done
- Schedule......

Future Issues

- Modulator triggers on existing control system how to rate-limit from new system
- Handling non-LCLS beams add more beampulse-dependent info (ie, bunch charge) to timing pattern for IOC apps
- How to upgrade PMC-EVR firmware

Status (Dayle Kotturi)

- Received the EVG/EVR 200 series VME hardware (which sends up to 2K data buffer)
- Received the EVR 200 series PMC module
- Adapted driver and device support to:
 - send the PNET data buffer (measured 66 µs transfer)
 - be OSI (running on mvme6100, RTEMS4.7)
 - with help from Till Straumann, Eric Bjorklund, Timo Korhonen, Jukka Pietarinen and Bob Dalesio

Status (cont)

- Stephanie Allison and Mark Crane coming up to speed
- Test stands for HW folks not yet ready
- Rack/cable design for injector/BC1 well underway
- Procurement underway

To-Do

- Finish PMC-EVR driver and test (share PMC-EVR and VME-EVR driver as much as possible)
- EVG sequence RAM programming at 360 Hz
- EVG rules and algorithm definition for Jan commissioning
- Add support for EVR timing pattern data records (in place well before next beam pulse)
- Jitter testing
- Interface with other subsystems needs review
- Commissioning test plan